

TECOMAQUINONE-III: A NEW QUINONE FROM *TABEBUIA PENTAPHYLLA*

PAVAN K. SHARMA, RAJINDER N. KHANNA, BAL K. ROHATGI and RONALD H. THOMSON*

Department of Chemistry, University of Delhi, Delhi 110007, India; *Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, U.K.

(Received 8 May 1987)

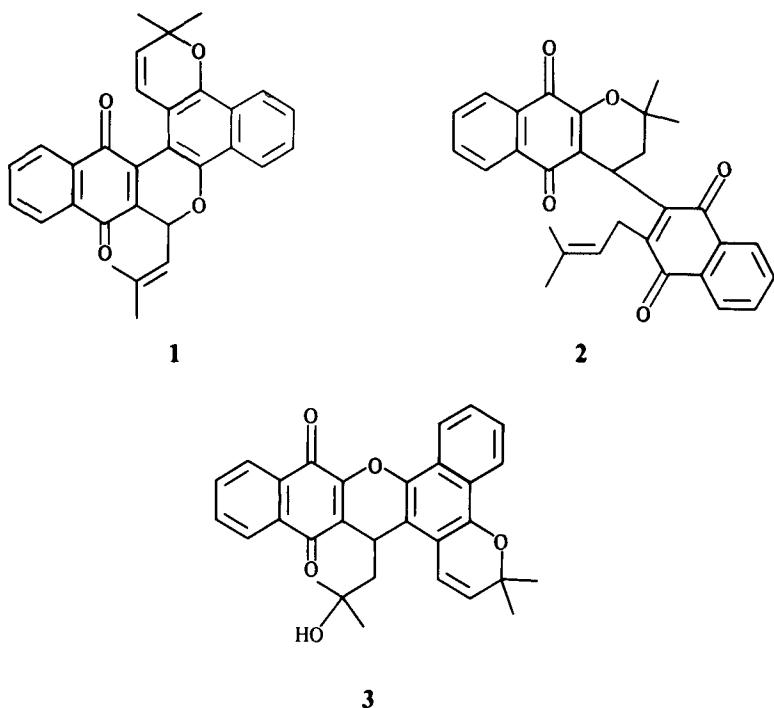
Key Word Index—*Tabebuia pentaphylla*; Bignoniaceae; tecomaquinone; 1,4-naphthoquinone.

Abstract—Tecomaquinone-III, isolated from the heartwood of *Tabebuia pentaphylla*, has been identified as 6,10,15-trihydro-9(2-hydroxy-2-methylpropyl)-6,6-dimethyldibenzo[a,i]pyrano[2',3'-c]xanthen-10,15-quinone by spectroscopic methods.

The heartwood of *Tabebuia pentaphylla* (Bignoniaceae) contains [1] several C₁₅ naphthoquinones related to lapachol, and two dimeric C₃₀ quinones, tecomaquinone-I (1) [1, 2] and tecomaquinone-II (2) [1, 3]. We now describe a third C₃₀ quinone, tecomaquinone-III (3) from the same source.

The violet pigment, tecomaquinone-III, is reversibly reduced with dithionite, and there is IR, ¹H and ¹³C NMR evidence for two quinone carbonyls and a tertiary hydroxyl group (see Experimental). As the molecular formula is C₃₀H₂₆O₅ the two remaining oxygens must be in ether bridges. One of these is a pyran ring like that in 1 as the ¹H NMR spectrum contains methyl singlets at δ 1.49 and 1.52, coupled vinyl doublets at 5.80 and 6.71 (J = 10.0 Hz), and the ¹³C NMR spectrum includes a singlet at δ 76.11. The remainder of the ¹H NMR spectrum comprises signals for eight aromatic protons, two further methyl singlets (δ 1.08 and 1.39), and a methine doublet at δ 4.73 coupled to a 2H methylene multiplet at 1.87. These aliphatic signals we ascribe to a -CH-CH₂-C(OH)Me₂ side chain located at C-9 in 3 to account for (i) the base peak in the MS at [M - C₄H₉O]⁺ (accurately measured), (ii) a singlet in the ¹³C NMR spectrum at δ 70.25 and (iii) the optical activity of the pigment (measured on the leucotriacetate). Further, heteronuclear decoupling established that the methine proton resonating at δ 4.73 is attached to a carbon at δ 25.85, i.e. the side chain is attached to carbon and is not linked to oxygen (cf. 1).

The combined evidence shows that tecomaquinone-III has structure 3 which is isomeric with 1 (+ H₂O). As tecomaquinone-III does not react with *o*-phenylenediamine in boiling methanol (3 hr) the alternative *o*-quinone structure can be excluded.


EXPERIMENTAL

Tecomaquinone-III (6,10,15-trihydro-9(2-hydroxy-2-methylpropyl)-6,6-dimethyldibenzo[a,i]pyrano[2',3'-c]xanthen-10,15-quinone) (3). *Tabebuia pentaphylla* heartwood was extracted and the residue chromatographed on silica gel as before [1]. Elution with C₆H₆ afforded a violet fraction which was purified by PLC

in C₆H₆-Me₂CO (4:1) to give 3 as dark violet crystals, mp 219-222° (Me₂CO-petrol). Found: C, 77.4; H, 5.5%; [M]⁺, 466.1785. (C₃₀H₂₆O₅ requires C, 77.3; H, 5.6%; M, 466.1779); UV $\lambda_{\text{max}}^{\text{CHCl}_3}$ nm (log ε): 252, 269, 278, 341, 354sh, 524 (4.56, 4.49, 4.48, 3.81, 3.78, 3.20); $\lambda_{\text{MeOH}}^{\text{MeOH}}$ nm 484; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3530, 3450 br, 1672, 1655, 1632, 1592, 1344, 1255, 1200; ¹H NMR (360 MHz, CDCl₃): δ 1.08, 1.39 [each 3H, s, Me₂C(OH)], 1.49, 1.52 (each 3H, s, Me₂C), 1.87 (2H, ddd, J = 14.6, 9.4, 3.4 Hz, CH₂), 2.26 (1H, br s, OH), 4.73 (1H, dd, J = 9.4, 3.4 Hz, CH₂CH₂), 5.80, 6.71 (each 1H, d, J = 10.0 Hz, CH=CH), 7.48 (1H, dt, J = 6.9, 1.3 Hz, ArH), 7.55 (1H, dt, J = 6.9, 1.3, Hz, ArH), 7.72 (2H, m, ArH), 8.16 (3H, m, ArH), 8.39 (1H, d, J = 8.1 Hz); ¹³C NMR (90 MHz, CDCl₃): δ 25.85 (d), 27.26 (q), 27.48 (q), 29.45 (q), 30.72 (q), 51.46 (t), 70.25 (s), 76.11 (s), 111.73 (s), 116.59 (s), 118.00 (d), 121.18 (d), 121.82 (d), 124.22 (s), 124.48 (s), 125.28 (s), 125.96 (d), 126.35 (d), 126.50 (d), 127.03 (d), 130.73 (d), 130.90 (s), 132.19 (s), 133.49 (d), 134.02 (d), 139.80 (s), 146.36 (s), 152.97 (s), 178.12 (s), 185.70 (s); EIMS (probe) 70 eV, *m/z* (rel. int.): 466 (21, M⁺), 451 (10), 394 (32), 393.1147 (C₂₆H₁₇O₄ requires 393.1127, 100) [M⁺-C₄H₉O], 378 (9), 364 (13), 189 (13).

The leucotriacetate (Ac₂O-NaOAc-Zn) crystallized from aq. MeOH in small plates, mp 215-217°. Found: [M]⁺, 594.2249 (C₃₆H₃₄O₈ requires M, 594.2253); [α]_D²⁰ -1.01° (CHCl₃; c 0.4); UV $\lambda_{\text{MeOH}}^{\text{MeOH}}$ nm: 232, 268, 277, 349 (w); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1770, 1731, 1650 (w), ¹H NMR (220 MHz, CDCl₃): δ 1.32 [6H, s, Me₂C(OAc)], 1.43, 1.45 (each 3H, s, Me₂C), 1.50, 2.57, 2.64 (each 3H, s, 3 × OAc), 2.19, 2.30 (each 2H, dd, J = 6.5 and 16 Hz, CH₂), 4.76 (1H, t, J = 6.5 Hz, CH₂CH₂), 5.77, 6.67 (each 1H, d, J = 11 Hz, CH=CH), 7.48 (4H, m, ArH), 7.71, 7.88 (each 1H, dd, J = 2 and 9 Hz, ArH), 8.16 (2H, dd, J = 2 and 9 Hz); EIMS (probe) 70 eV, *m/z* (rel. int.): 594 (M⁺, 40), 479.1475 (C₃₀H₂₃O₆ requires 479.1494, 80) [M⁺-C₆H₁₁O], 437.1366 (C₂₈H₂₁O₅ requires 437.1386, 100) [M⁺-C₆H₁₁O-C₂H₂O], 395 (10), 394 (35), 393 (52), 379 (28), 208 (20).

Acknowledgements—We thank Edinburgh University WH-360 NMR Service for spectra.

REFERENCES

1. Rohatgi, B. K., Gupta, R. B., Roy, D. and Khanna, R. N. (1983), *Indian J. Chem.* **22B**, 886.
2. Khanna, R. N., Sharma, P. K. and Thomson, R. H. (1987) *J. Chem. Soc. Perkin Trans. I*, 1821.
3. Sharma, P. K., Gupta, R. B., Khanna, R. N. and Rohatgi, B. K. (1985) *Indian J. Chem.* **24B**, 1070.